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Note

On the Successive Pade Remainders of exp (x)
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Recently, Gautschi [2] and Brezinski [1] gave some results on the suc
cessive Taylor series remainders of exp (x), showing the total monotonicity
of some sequences connected with these remainders. Here we generalize one
of these results to the successive Pade remainders of exp (x).

Pade [3] gave explicit expressions for the numerator and denominator
of the (m, n)-Pade approximant UI11. ,,(X)/VIII. ,,(x) to exp (x) and also for
the (m, n)-Pade remainder R~,I11)(X), i.e.,

( 1)111 1
= - x l11 +,,+lf t"(I-t)l11 ell iI'dt,

(m+n)! 0

VIII. ,,(x) = IFI ( -m; -m-n; -x).

These expressions are valid for all x E C and m, n E No = {O, I, 2, ... }.
From now on, x is real as are all other numbers in this paper.

2

We introduce the functions ¢I~:n)(x) (m, n E No) as follows

xtn+fl + 1

RI I11 I(X)=(-I)111 ' ¢l1 111 1(X)
" (m+n+l)! "
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hence

f/I);')(X) = (m + n + 1)r1"(1 - I)m e(1-I)xdl.
o

We: recall that a sequence (UI1)'~~() is called totally monotone (E TM) if

with Llu" = U II - U,,+ I'

THEOREM 1. \fx>O, \fmEN o (f/I),m)(x)),-;'~oETM.

Proof: Putc,,=Jbt"e ll l)'dt(nENo).Then

Ll\'" =rt"{1- t)k ell -I)xdt.
o

(CII)';~ () E TM by Hausdorffs theorem. Next we have

f/I~:,I)(x) = (m + n + 1) Ll"'c lI = (n + 1) Llmc" + mLlmc". (2.1)

Furthermore,

(n+ I) Ll"'c" = (n+ I)fl I I1(I-/)"'e ll I)\dt
()

=f
l
{1-t)"'e II I)Xd(t"+I)

()

=fl t"+I[m(l-t)m--l+(I-t)m x ]e ll I)xdt.
()

For x> 0, the last integral represents the general term of a totally
monotone sequence. Since also (mLl"'c l1 ),~~ () E TM, the assertion follows
from (2.1). I

We established a result on the successive Pade remainders on the mth
row of the table for exp (x).

Gautschi's result in [2] is the special case m = O.
For the successive Pade remainders in a column of the table for exp (x)

we have a Theorem similar to Theorem I. We first notice

From this and Theorem 1 we obtain for the mth column:
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