Note

On the Successive Padé Remainders of $\exp (x)$

H. van Rossum
Department of Mathematics, University of Amsterdam, Roetersstraat 15, Amsterdam, The Netherlands

Communicated by Paul G. Nevai
Received March 29, 1985; revised July 15, 1985

DEDICATED TO THE MEMORY OF GÉZA FREUD

1

Recently, Gautschi [2] and Brezinski [1] gave some results on the successive Taylor series remainders of $\exp (x)$, showing the total monotonicity of some sequences connected with these remainders. Here we generalize one of these results to the successive Padé remainders of $\exp (x)$.

Padé [3] gave explicit expressions for the numerator and denominator of the (m, n)-Pade approximant $U_{m, n}(x) / V_{m, n}(x)$ to $\exp (x)$ and also for the (m, n)-Padé remainder $R_{n}^{(m)}(x)$, i.e.,

$$
\begin{aligned}
R_{n}^{(m)}(x) & =V_{m, n}(x) e^{x}-U_{m, n}(x) \\
& =\frac{(-1)^{m}}{(m+n)!} x^{m+n+1} \int_{0}^{1} t^{n}(1-t)^{m} e^{(1-n x} d t, \\
U_{m, n}(x) & ={ }_{1} F_{1}(-n ;-m-n ; x) ; \quad V_{m, n}(x)={ }_{1} F_{1}(-m ;-m-n ;-x) .
\end{aligned}
$$

These expressions are valid for all $x \in \mathbb{C}$ and $m, n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$. From now on, x is real as are all other numbers in this paper.

We introduce the functions $\phi_{n}^{(m)}(x)\left(m, n \in \mathbb{N}_{0}\right)$ as follows

$$
R_{n}^{(m)}(x)=(-1)^{m} \frac{x^{m+n+1}}{(m+n+1)!} \phi_{n}^{(m)}(x)
$$

hence

$$
\phi_{n}^{(m)}(x)=(m+n+1) \int_{0}^{1} t^{n}(1-t)^{m} e^{(1-n) x} d t
$$

We recall that a sequence $\left(u_{n}\right)_{n=0}^{x}$ is called totally monotone $(\in T M)$ if

$$
\forall k, n \in \mathbb{N}_{0}, \quad \Delta^{k} u_{n} \geqslant 0, \quad \text { with } \quad \Delta u_{n}=u_{n}-u_{n+1}
$$

Theorem 1. $\forall x>0, \forall m \in \mathbb{N}_{0}\left(\phi_{n}^{(m)}(x)\right)_{n=0}^{\infty} \in$ TM.
Proof. Put $c_{n}=\int_{0}^{1} t^{n} e^{\left(1 \cdot{ }^{n x}\right.} d t\left(n \in \mathbb{N}_{0}\right)$. Then

$$
\Delta^{k} c_{n}=\int_{0}^{1} t^{n}(1-t)^{k} e^{(1-t) x} d t
$$

$\left(c_{n}\right)_{n=0}^{x} \in$ TM by Hausdorff's theorem. Next we have

$$
\begin{equation*}
\phi_{n}^{(m)}(x)=(m+n+1) \Delta^{m} c_{n}=(n+1) \Delta^{m} c_{n}+m \Delta^{m} c_{n} \tag{2.1}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
(n+1) \Delta^{m} c_{n} & =(n+1) \int_{0}^{1} t^{\prime \prime}(1-t)^{m} e^{(1-t) x} d t \\
& =\int_{0}^{1}(1-t)^{m} e^{(1-t) x} d\left(t^{n+1}\right) \\
& =\int_{0}^{1} t^{n+1}\left[m(1-t)^{m-1}+(1-t)^{m} x\right] e^{(1 \quad t) x} d t
\end{aligned}
$$

For $x>0$, the last integral represents the general term of a totally monotone sequence. Since also ($\left.m \Delta^{m} c_{n}\right)_{n=0}^{s} \in \mathrm{TM}$, the assertion follows from (2.1).

We established a result on the successive Pade remainders on the m th row of the table for $\exp (x)$.

Gautschi's result in [2] is the special case $m=0$.
For the successive Pade remainders in a column of the table for $\exp (x)$ we have a Theorem similar to Theorem 1. We first notice

$$
\forall m, n \in \mathbb{N}_{0}, \quad \phi_{n}^{(m)}(-x)=e^{-x} \phi_{m}^{(n)}(x)
$$

From this and Theorem 1 we obtain for the m th column:
Theorem 2. $\quad \forall x<0, \forall m \in \mathbb{N}_{0},\left(\phi_{m}^{(n)}(x)\right)_{n=0}^{\infty} \in$ TM.

References

1. C. Brezinski, On the successive remainders of the exponential series. Elom. Math. 38 (1983), 86-89.
2. W. Gautschi, A note on the successive remainders of the exponential series. Elem. Math. 37 (1982), 46-49.
3. H. Padé, Sur les développements en fractions continues de la fonction exponentielle. Ann. Sci. Ecole Norm. Sup. (1899), 395-426.
